
159

minimum and health informatics plays a critical role in 
our efforts to do so.

Health informatics is the electronic acquisition, 
storage, analysis, and use of medical information to 
advance medical care, improve patient outcomes, and 
reduce costs. It can also increase the efficiency and 
effectiveness of the healthcare system. From a safety 
and quality perspective, health informatics: [1] provides 
the medical information required to properly manage 
patients, [2] generates accurate risk, diagnosis, and prog-
nosis (including treatment) predictions that improve 
care and outcomes, [3] creates real-world simulations 
and other forms of online training that improves clini-
cian safety and quality knowledge and performance, [4] 
performs real-time monitoring and clinician notification 
of activities that place patients at risk of a safety event or 
low quality activity, and [5] detects and notifies clinician 
of the occurrence of safety and quality events.

INTRODUCTION

Improving medical safety and quality is difficult 
because of the number of the patients, the number and 
variety of medical conditions, and the complexity of the 
patient’s condition. For example, disease pervasiveness 
is reflected in the fact that, in 2020, 83.4% of adults had 
a visit with a healthcare professional and there were 
860.4 million physician office visits.(1) Many of these 
patient encounters were complex and each encounter 
provided multiple opportunities for clinicians, healthcare 
systems, and even patients, to make mistakes. These 
mistakes can have many causes, including: clinician 
cognitive errors, the rarity and/or complexity of medical 
conditions, clinician time pressures and distractions, 
miscommunication and misunderstanding, and defects 
in the healthcare system’s delivery of medical care. The 
sheer number of encounters, and the fact that clinicians 
and patients are human, means that there will always be 
safety and quality issues. Our job is to reduce them to a 
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of care; (4) promote effective prevention and treat-
ment of chronic disease; (5) work with communities to 
promote best practices of healthy living; and (6) care 
affordable.”(5) In other words, “better health, better 
care, lower cost through improvement.”(5,6) From the 
Agency for Healthcare Research and Quality’s perspec-
tive, quality is “the degree to which health care services 
for individuals and populations increase the likelihood of 
desired health outcomes and are consistent with current 
professional knowledge.”(7)

As one might imagine, value is a difficult concept to 
define. Generally, value is the how important something 
is to us. It can be expressed in monetary terms, e.g., how 
much a person or organization is will pay, or accept, for 
something. In this sense, value is comparative because 
resources are finite and choices must be made regarding 
how to allocate those resources. In addition to value 
being quantitative, it can also be expressed in qualitative 
terms. For example, how much a person values health 
or recovering from an illness, and how much an organi-
zation values providing safe, high quality medical care.

It should come as no surprise that there are four 
perspectives to value, namely, the providers of care, 
the recipients of care, the payers of care, and the social 
norms associated with medical care. Furthermore, these 
perspectives are not the identical. For example, in a 
University of Utah survey of 5,031 patients, 687 physi-
cians, and 538 employers, found that 88% of physicians 
equated value with the quality of care, 60% of employers 
ranked cost as the key component of value, and 45% of 
patients said that value was affordable out-of-pocket 
expenses.(8)

The monetary value patients place on their health can 
vary depending on the medical situation. For example, 
patients usually attach little monetary value to preven-
tion; they may engage in health prevention activities 
so long as they do not cost a great deal of money. But 
when people are sick, they are willing to pay more for 
their medical care. Furthermore, when someone else is 
paying for their care, patients and their families usually 
want everything done, no matter the cost. Finally, out-of-
pocket costs are very effective in lowering U.S. healthcare 
utilization costs – many patients will decline medical care 
for non-acute, non-life-threatening illnesses if they must 
pay for that care. 

There is little accurate information regarding medical 
cost because there is little available information regarding 
the cost of care. Although 76% of physicians consider 
cost when making treatment decisions, it is not clear what 
“cost” they are considering.(8) Is it the direct expense 
involved in delivering medical care to a specific patient? 
If so, this cost is rarely known by anyone in health care 

SAFETY, QUALITY, AND VALUE

Safety, quality, and value have been central to medi-
cine since the beginning of recorded time. “Do no harm” 
is a prime example of the importance of preventing safety 
events. But western medicine, during the hegemony of 
Galen, from approximately 200 CE to 1600 CE, adopted 
the unsafe practice of bloodletting and the low-quality 
theory of the “four humors of the body” mechanism of 
disease. The rise of scientific medicine ended Galen’s 
reign. Medicines shifted its attention to such areas as 
anatomy and physiology, surgical asepsis and anes-
thesia, and diagnostics and therapeutics. The 20th century 
witnessed the professionalization of medicine: physicians 
received formal training, they began handwriting patient 
information on pieces of paper, and they started using 
experimental data to inform their treatment decisions. 
Safety and quality, as a systematic and professional 
activity, began in the 1950s. The first entry of the phrase 
“patient safety program” in PubMed occurred in 1962.(2)

If we are to use health informatics to improve safety, 
quality, and value, we must discuss what safety, quality, 
and value are. To begin, safety and quality are asymmet-
rically related; a lapse in safety almost always lowers 
quality, but safe medicine is not always high-quality 
medicine. An important concept is that they have different 
definitions, depending on the viewer’s perspective. From 
the physician’s perspective, safety, quality, and value are: 
do good work, don’t mess up, and don’t charge a lot. From 
the clinical outcome perspective, safety, quality, and 
value are the ability of physicians to provide appropriate 
and affordable care that achieves the expected clinical 
outcomes and that doesn’t harm the patient. From the 
patient’s perspective safety, quality, and value are that: 
(1) they understand the care they are receiving; (2) their 
care takes into account their values, preferences, and 
expectations; (3) they affirmatively agreed to their care; 
(4) their care is appropriate for their medical condition; 
(5) their care meets the current medical standards; and 
(6) they can afford it.(3)

From the Institute of Medicine’s perspective, quality 
is a set of six aspirational goals: medical care should 
be safe, effective, timely, efficient, patient-centered, 
and equitable.(4) Safe and effective care focuses on 
the physician; timely, efficient and patient-centered 
focuses on the healthcare system; and equitable focuses 
on societal values. From the Center for Medicare and 
Medicaid Services’ perspective, quality is a set of six 
aspirational goals: “(1) make care safer by reducing 
harm caused in the delivery of care; (2) strengthen 
person and family engagement as partners in their care; 
(3) promote effective communication and coordination 
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Rationing is based on priorities and they depend on what 
societies are willing spend their money on. Government 
spending decisions are usually based on: (1) political 
budget decisions, (2) the overall cost of medical condi-
tions (the number of patients times cost per patient), and 
(3) a cost-benefit justification.

In the U.S., the Centers for Medicare and Medicaid 
Services (CMS) uses financial incentives and disin-
centives to regulate the practice of medicine. CMS has 
established a “value-based” payment system that aims 
to obtain value for its money by eliminating “inappro-
priate and unnecessary” care and by applying quality 
metrics to improve the quality of care.(16) There are at 
least two important problem with this approach: (1) how 
to define inappropriate and unnecessary and (2) how to 
integrate new tests and treatments into the value equation. 
Furthermore, value-based payment systems may not 
result in significant reductions in the cost of care.(17-18) 
In addition, it is not clear that CMS’s anticipated cost 
reductions will significantly offset the cost of improving 
safety and quality. For example, in a population of high-
cost Medicare patients, it was found that only 4.8% of the 
spending was preventable.(19) In other words, although 
we would like to lower costs by receiving value, there are 
countervailing factors, factors that meet the definition 
of value but drive up costs. 

In recent years, the U.S. federal government has estab-
lished organizations designed to drive safety and quality 
improvement. The Agency for Health Care Policy and 
Research was established under the Omnibus Budget 
Reconciliation Act of 1989 (103 Stat. 2159). It was 
reauthorized with its name changed to the Agency for 
Healthcare Research and Quality (AHRQ) under the 
Healthcare Research and Quality Act of 1999. Its mission 
is to “produce evidence to make health care safer, higher 
quality, more accessible, equitable, and affordable.”(20) 
Federal organizations play an important role in stim-
ulating safety and quality research and implementing 
safety and quality practices. For example, as early as 
1972 the National Library of Medicine, a part of the 
National Institutes of Health, began funding informatics 
training programs. Its goal was to train individuals to 
apply computer and information science to medicine.(21)

Interestingly, one can ask, what is the value of health 
informatics? For example, what is the economic benefit 
of a clinical decision support system (CDSS) used for 
cardiovascular disease prevention? Jacob et al. recently 
undertook a systematic review to answer this question.
(22) They found that, “The symposium noted the difficulty 
in transitioning from judgments of economic value at the 
level of specific implementations to a judgment about the 
aggregate of the implementations: costs and benefits have 

because it is rare for there to be an accurate patient-
level cost accounting. Is it the contractual payments 
of employers and government agencies? Other than 
Medicare and Medicaid, these contract payments are 
considered a trade secret by the third-party payers and 
physicians are rarely privy to these payments. In other 
words, other than the physician’s own prices, it is unusual 
for a physician to know the list prices or payments for 
care. Furthermore, patients almost never know the cost 
of care until they receive an explanation of benefits, 
reflecting the charges and payments for care. Finally, 
there is the list price of care, which is the price that a 
patient pays if he or she is not covered by a third-party 
insurance. Ironically, the patients who least afford health 
insurance were the patients who have paid the most for 
medical care.

This situation has been changing. On January 1, 2021 
Federal Rule (FR) 65524 took effect.(9) It mandated that 
all U.S. hospitals receiving federal funds publicly display 
their prices for 300 services. Five separate prices were 
required including the minimum and maximum negoti-
ated price and the discounted cash price. A recent study 
examined the compliance of 20 US News and World 
Report honor roll hospitals.(10) Six months after the rule 
went into effect, they found that “Many highly respected 
U.S. hospitals are not in compliance with new price trans-
parency legislation” (p. 1) and that only 30% posted both 
their cash and minimum and maximum negotiated prices. 
Furthermore, for hospitals where they could compare the 
cash price with the minimum negotiated price, the cash 
price was usually orders of magnitude higher. Finally, 
for cancer drugs, only 27 of the 61 National Cancer 
Institute-designated cancer centers disclosed private 
payer-specific prices for a least one top-selling therapy, 
and their markups on cancer drugs ranged from 118% 
to 664%.(11)

From a societal perspective, potential medical costs 
are almost infinite because there is essentially no limit 
to the amount of money that can be spent trying to 
achieve perfect clinical outcomes for all patients and 
all medical conditions. Therefore, all societies ration 
care, sometimes the rationing is explicit but it is usually 
implicit – hidden from view.(12) For example, the United 
Kingdom National Health Service practices explicit 
rationing(13) and, as British government’s spending has 
declined, the rationing has increased.(12-14) Another 
form of rationing, practiced by both the U.K. and Canada, 
is to make people wait until they either give up, die, or 
go to the private healthcare system. In Canada, after a 
referral from a general practitioner, there can be a two 
and one-half month wait to see a specialist and another 
two and one-half month wait to receive treatment.(15) 
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words, internal medicine physicians were perfectly 
capable of making accurate diagnoses without Internist-1 
and the program did not improve their diagnostic accu-
racy. Second, it could take many hours to manually input 
the clinical data into the program and no one wanted 
to perform that task. Internist-1 was transformed into 
Quick Medical Reference,(26-27) which was more of an 
information tool that a diagnostic program. It allowed 
clinicians to review the diagnostic information in the 
program’s knowledge base. It contained 700 diseases 
and 5,000 signs, symptoms, and laboratory values. Quick 
Medical Reference can function as a textbook and it 
can generate a rank order list of possible diagnoses. 
Additional diagnostic programs included: DXplain,(28-
29) which contained 2,000 diseases, 5,000 clinical 
manifestations, and used a modified form of Bayesian 
statistics; Iliad,(30) which contained 930 diseases, 1,500 
syndromes, 13,900 disease manifestations, and 90 simu-
lated cases; and Isabel, which contained 11,000 diagnoses 
and 4,000 drugs and heuristics.(31-32) These programs, 
examples of clinical decision support systems, have the 
potential to improve the quality of care but they had to 
wait for the arrival of EHRs, and of computers in exam 
and hospital rooms, before they could be put to clin-
ical use. Computer-based diagnostic prediction, as an 
example of clinical decision support systems, is still not 
widely used in medicine even though they can increase 
the likelihood of the inclusion of the correct diagnosis 
in the differential diagnosis list.(33)

Even in the earliest years, health informaticians under-
stood that if medicine was to improve its safety and 
quality health informatics would have to be able to assess 
what was in the patient record in an electronic form. Yet 
it was not until 1991, with the publication of the Institute 
of Medicine’s CPR Report – Computer-based Patient 
Record,(34) that there was an in-depth analysis of the 
potential benefits of the electronic health record (EHR) 
and of the issues related to implementation barriers – 
including privacy and cost. The report was a national 
call for the adoption of a computer-based patient record. 
Unfortunately, at that time, there was very little knowl-
edge of, and experience with, EHRs. 

The advent of the electronic health record

At the turn of the 20th century, medical records were 
handwritten on index cards and stored in envelopes.
(35,36) As the century progressed medicine, and medical 
records, became more complex. In addition, as medical 
information increased, the need for physicians to write 
more detailed and complete notes increased.(37-39) These 
factors drove the increasing size and scope of the medical 

to be summed over implementations with different orga-
nizational contexts, technologies, functions, outcomes, 
scales, and scope. This systematic economic review 
of one type of health information technology, namely 
CDSS, encountered similar difficulties among others 
in synthesizing the economic evidence from various 
implementation instances.” In other words, because of a 
paucity of data regarding the drivers of cost and benefit, 
and a lack of cost metrics, they were unable to determine 
if CDSSs were cost-effective for cardiovascular disease 
prevention. The problems Jacob et al. describe are not 
limited to clinical decision support systems; they apply 
to most medical cost-benefit calculations.

Finally, safety and quality cost money. They require 
increased expenditures on clinician safety and quality 
training; they require that clinicians spend time on 
quality improvement activities rather than seeing 
patients; and they require investments in healthcare 
systems (overhead costs and personnel) and on health 
information systems. Fortunately, health informa-
tion technology (HIT) can improve the efficiency of 
health care while, at the same time, enhancing safety 
and quality. HIT can be able to accomplish this by 
monitoring and assessing care and by reporting the 
information that clinicians need to know in order to 
prevent unsafe actions and assist clinicians in their 
cognitive and procedural activities. This will have the 
effect of advancing safety and quality and, as a conse-
quence, improving value.

USING COMPUTERS TO IMPROVE 
SAFETY, QUALITY, AND VALUE

Health informatics, formerly medical informatics, has 
a long and honorable history that began with meeting the 
needs of healthcare administrators. In the 1960s, hospi-
tals started using mainframe computers for inventory 
control, for accounting and billing, and for laboratory 
results. Furthermore, as early as the mid-1960s, there 
were calls for computerizing outpatient clinic records 
(23) and, starting in the 1970s, and continuing to this 
day, there has been a keen interest in computer-based 
clinical decision support systems.

The first important computer-based clinical systems 
were designed to improve quality. They were diagnostic 
clinical decision support systems. The initial publication 
was the internal medicine diagnostic system Internist-1.
(24,25) It consisted of a set of branching if-then rules 
and contained 570 diseases. There were two issues with 
Internist-1 and with similar computer-based systems. 
First, they did not solve a medical problem. In other 
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little ability to use EHRs in the day-to-day practice of 
medicine.(36)

The widespread implementation and clinical use of 
electronic medical records in the United States began 
with President George Bush’s 2004 State of the Union 
Address in which he said, “By computerizing health 
records, we can avoid dangerous medical mistakes, 
reduce costs, and improve care.”(45) This was an aspi-
rational rather than a scientific or empirical statement 
because there was little evidence for this statement at 
that time. His speech was followed by Executive Orders, 
by several major legislative initiatives, and by Federal 
implementation rules and regulations, including:

• In 2004, the Office of National Coordinator for 
Health Information Technology (ONC) was estab-
lished by Executive Order. The ONC was a national 
office whose mission was to promote and oversee 
the development of health information technology.

• In 2009, the American Recovery and Reinvestment 
Act was passed (H.R. 1, Pub. L. 111-5). It included 
the Health Information Technology for Economic 
and Clinical Health (HITECH) Act which authorized 
the use of financial incentives to promote the mean-
ingful use of EHRs to improve safety and quality. 
It also mandated that the National Coordinator for 
Health Information Technology oversee the imple-
mentation of EHRs.(46) 

• In 2010, the Patient Protection and Affordable Care 
Act (known colloquially as Obamacare) (H.R. 35-90, 
Pub.L. 111-148) included mandated financial incen-
tives for hospitals and clinicians for improvements 
in the quality of care of Medicare patients. 

• In 2015, the Medicare Access and CHIP 
Reauthorization Act (MACRA), (H.R. 2, Pub.L. 
114–10), institutionalized the use of medical infor-
matics to assess quality, improve clinical care, and 
lower costs. It allowed the Centers for Medicare and 
Medicaid Services to financially incentivize clini-
cians and medical organizations to adopt electronic 
medical record systems and to demonstrate their 
“meaningful use.” (In 2018, the phrase “promoting 
interoperability” replaced “meaningful use.”)

• In 2017, the Merit-Based Incentive Program System 
(MIPS) was introduced along with the Alternative 
Payment Models (APMs), which replaced sev-
eral prior initiatives in order to better monitor and 
improve safety, quality, and value. 

These federal initiatives drove the transition from 
paper-based records to electronic records. The EHR 
has become the foundation for many safety advances, 
for quality improvement projects, and for improved 
billing practices. But several issues related to the EHR 

record – medical records became a large, paper-based 
loose-leaf collection of clinical notes, treatments and 
procedures, laboratory and radiology reports, consulta-
tions, and other information.

In 1996, President Clinton signed the Health Insurance 
Portability and Accountability Act (HIPAA) into law 
(Public Law 104 - 191). It was designed to make health 
insurance more affordable, accessible, and included 
important provisions that addressed transmission and 
privacy issues related to electronic personal health infor-
mation (PHI). HIPAA focused national attention on 
health information technology and the use of EHRs, in 
part to improve safety and quality. The increased national 
awareness of, and interest in, safety and quality, led 
the Institute of Medicine (now known as the National 
Academy of Medicine) to publish a series of landmark 
reports that shaped the national dialogue on healthcare 
safety and quality, and which emphasized the importance 
of the electronic medical record. These publications 
included:

• Published in 2000, To Err Is Human, Building a Safer 
Health System, focused on the safety and quality 
of care.(40) This publication claimed that almost 
100,000 hospital deaths were caused by medical 
errors and asserted that that the problem was that 
good clinicians were working in a dysfunctional 
system. It set forth “a national agenda…for reducing 
medical errors and improving patient safety through 
the design of a safer health system.”

• Published in 2003, Key Capabilities of an Electronic 
Health Record System, discussed the basic func-
tions of an EHR, database management, and data 
standards.(41-42) It called for clinicians to abandon 
paper-based charts and move to electronic health 
systems and computer-aided decision support sys-
tems. 

• Published in 2004, Patient Safety: Achieving a New 
Standard for Care, asserted that in order to pre-
vent errors and to learn from the errors that do 
occur, a new healthcare delivery system was needed.
(43) It advocated for a radical restructuring of the 
medical system that had evolved over the last 100 
years. The new system would be based on a cul-
ture of safety and the implementation of electronic 
information systems. In addition, it proposed the 
development of healthcare data standards for the 
exchange, reporting, and analysis of safety data.

Yet, in the 13 years after the 1991 publication of CPR 
Report – Computer-based Patient Record,(32) EHRs 
had not been widely adopted in clinical medicine.(44) 
Furthermore, there were few computers in outpatient 
examination rooms and hospital rooms, so there was 
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relational database that acquires, stores, and retrieves 
information, and (3) powerful, extensible auditing and 
reporting systems. Prior to President Bush’s speech there 
were many small, primitive by today’s standards, EHR 
systems – none of which were in widespread use. The 
main barrier to their acceptance was that few physicians 
used computers in their clinical practice, even fewer had 
computers in their exam rooms, and almost none used 
them routinely during their interactions with patients. 
The reason for this situation was that the paper chart had 
been optimized by clinicians over the previous hundred 
years and it was an extremely efficient clinical data 
acquisition, storage, and retrieval system.(36)

But paper records had at least six disadvantages.
(36) First, it could be difficult to read the handwriting 
in some notes and they could contain handwriting 
errors and non-standard abbreviations. Second, the 
patient’s current chart would occasionally be checked 
out of medical records and it could take several hours 
to retrieve it. Third, charts were local and could not 
be accessed remotely. Fourth, paper records took up 
clerical personnel time and space. Fifth, it was very 
expensive to manually review charts. These factors 
meant that it was difficult for administrators to see what 
physicians were doing because they had to manually 
review individual charts and that was expensive. For 
example, the cost of a manual review varied from $74 to 
$350 per chart, depending on the amount of information 
extracted.(49) This meant that, except for peer reviews, 
charts were not routinely audited to determine physician 
and nurse performance and hospitals could not direct 
physicians to change their documentation practices in 
order to increase revenue. The EHR eliminated the 
cost of chart review. It is easily readable, it is usually 
available, it takes up very little space (except in the 
exam room where it takes up a great deal of space), and 
it can be used to aggregate and analyze clinician and 
healthcare system performance. It was expected that 
it would take physicians the same amount of time to 
use an EHR as it took to use a paper chart and that the 
reduction in clerical and storage costs would more than 
pay for the adoption and use of EHRs. Both assumptions 
turned out to be incorrect and those errors had major 
effects on health care, including driving down physician 
satisfaction and driving up healthcare costs. 

Within a year of President Bush’s speech, CMS began 
rolling out programs to financially encourage clinicians 
and hospitals to purchase computers and EHR programs 
and, later, to meaningfully use them. The rationale was 
that computers would significantly improve safety and 
quality. These programs were usually based on financial 
incentives and penalties. The American Recovery and 

remained unresolved including record portability, the 
transmission of records between EHR systems, and 
clinician acceptance. 

In parallel with the federal clinical improvement initia-
tives, the National Library of Medicine redoubled its 
support of health informatics education and training. 
It expanded its mission from creating computer-related 
medical applications to supporting sixteen graduate 
level biomedical informatics training programs in the 
areas of translational bioinformatics, clinical research 
informatics, healthcare informatics, and public health 
informatics.(47)

During this time many private and quasi-private orga-
nizations were created to improve safety and quality. For 
example, the National Quality Forum’s mission “is to lead 
national collaboration to improve health and healthcare 
quality through measurement. We strive to achieve this 
mission by: Convening key public- and private-sector 
leaders to establish national priorities and goals to 
achieve healthcare that is safe, effective, patient-cen-
tered, timely, efficient, and equitable; working to ensure 
that NQF-endorsed standards will be the primary stan-
dards used to measure and report on the quality and 
efficiency of health care in the United States; and by 
serving as a major driving force for and facilitator of 
continuous quality improvement of American healthcare 
quality.”(48) In addition, every major medical center has 
a robust safety and quality program.

Health informatics has taken great strides over the 
last decade in three important areas:

1. Clinical activities – (a) widespread installation of 
computers in outpatient examination rooms and 
hospital rooms, (b) adoption of EHR systems and 
their use during the clinical encounter, and (c) 
implementation and use of clinical decision support 
systems;

2. Monitoring activities – assessing EHRs in order 
to measure clinician performance and to monitor 
patient safety; and 

3. Quality improvement activities – there has been a 
proliferation of quality improvement projects, but 
they have not always resulted in improved outcomes 
and they have not always been implemented within 
a medical system and across medical systems.

USING ELECTRONIC HEALTH RECORDS TO 
IMPROVE SAFETY, QUALITY, AND VALUE

From a health informatics perspective, an EHR system 
consists of: (1) a graphical user interface that the clinician 
uses to enter and view information, (2) a sophisticated 
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Although EHRs may not have a direct effect on safety 
and quality, they do allow administrative personnel to, 
for the first time, monitor clinician and healthcare system 
performance. Prior to EHRs, individual physician charts 
were audited (usually as part of the peer review process) 
but there was no aggregation of a physicians’ patient 
records and, therefore, no assessment of their perfor-
mance. Furthermore, the EHR creates opportunities for 
indirect safety and quality improvements related to: 1) 
determining the nature, frequency, and severity the safety 
and quality issues, 2) assessing quality and safety issues 
and implement solutions, and 3) determining if the imple-
mented solutions had, in fact, improved medical care. 
Furthermore, the addition of clinical decision support 
systems to EHRs has the potential to directly improve 
safety and quality. 

Clinician Perspective on Electronic Health Records

In the U.S., the electronic medical record has been 
driven by federal rules and regulation, payer require-
ments, administrators and, to a lesser extent, by safety 
and quality. The way EHRs are designed and imple-
mented has a dramatic impact on physician and nurse 
morale and performance. Many physicians believe that 
the EHRs were not designed for clinicians, which is why 
they are difficult for clinicians to use.(67-69) There is a 
perspective that supports the idea that EHRs were not 
designed for physicians. “With rapid consolidation of 
American medicine into large-scale corporations, corpo-
rate strategies are coming to the forefront in health care 
delivery, requiring a dramatic increase in the amount 
and detail of documentation, implemented through use 
of electronic health records (EHRs). EHRs are struc-
tured to prioritize the interests of a myriad of political 
and corporate stakeholders, resulting in a complex, 
multi-layered, and cumbersome health records system, 
largely not directly relevant to clinical care. Drawing on 
observations conducted in outpatient specialty clinics, 
we consider how EHRs prioritize institutional needs 
manifested as a long list of requisites that must be docu-
mented with each consultation. We argue that the EHR 
enforces the centrality of market principles in clinical 
medicine, redefining the clinician’s role to be less of a 
medical expert and more of an administrative bureau-
crat, and transforming the patient into a digital entity 
with standardized conditions, treatments, and goals, 
without a personal narrative.”(70) From this perspective, 
health informatics can be viewed as dehumanizing both 
patients and the clinicians and it can be seen as part of a 
larger effort to advance the interests of corporations and 
governments, at the expense of patients and clinicians. 

Reinvestment Act of 2009(50-51) significantly increased 
physician adoption of EHRs and the Centers for Disease 
Control and Prevention reported that, by 2015, 87% 
of office-based physicians were using an EHR.(52) In 
addition, CMS began introducing quality metrics that 
clinicians and hospitals had to meet in order to receive 
financial incentives and not incur financial penalties. 

At the time President Bush spoke, there were not, and 
to this day there have not been, any large scale random-
ized prospective studies that demonstrate significant 
improvements in safety and quality directly attributable 
to just the use of EHRs. The relationship between EHRs 
and clinical quality has been investigated, usually in 
cross-sectional studies of process measures rather than 
clinical outcomes.(53-60) The results have been equiv-
ocal. No study has demonstrated a computerization 
benefit across all its quality measures. Some studies 
have shown a partial benefit,(56, 57, 60, 61) while others 
have not demonstrated a significant clinical impact on 
quality.(53-55, 58,59,62) Furthermore, one of the few 
retrospective longitudinal studies that used the quality 
measure hemoglobin A1c compared before and after the 
introduction of an EHR and did not find as significant 
quality improvement attributable to the use of an EHR.
(63) Finally, it is unlikely that randomized prospective 
studies will ever be conducted because it would require 
half of the physicians in the study to return to hand-
written notes.

From a system perspective, the conversion from paper 
charts to an EHR system created several problems. One 
was that moving from paper to the EHR, or moving 
from one EHR system to another, usually does not 
carry forward the patient’s past medical information. 
Commonly, only medications, allergies, and problem 
lists are transferred to the new system. Access to the 
old system usually continues for a brief period of time, 
but the cumbersome use of two parallel systems usually 
ends rather quickly. 

In terms of EHR implementation, physicians should 
receive a great deal of expensive and time-consuming 
training, but most transitions provide relatively little 
training, and the training physician do receive usually 
consists of a short didactic related to the major features 
of the system – with little regard to how the EHR fits 
into the clinical workflow. Furthermore, there is no 
generally accepted method for training healthcare 
professionals and students on how to use EHR systems.
(64-65) This situation causes clinicians frustration and 
requires them to develop “workarounds” to achieve 
their patient-related goals. These workarounds can lead 
to safety issues.(66)



166    Chapter 9: Safety, Quality, and Value

In terms of clinician time, in order for administrators 
to obtain the information they want, physicians must 
enter a great deal of information into the EHR.(90) 
Physicians find this documentation to be excessive and 
onerous, they find that it detracts from face time with 
patients, and they find that it causes them to burnout.
(91-92) Electronic message volume is also a huge time 
problem, especially for primary care physicians, and can 
lead to exhaustion.(93-95) Furthermore, while cursive 
handwriting is fast, typing is slow. This means that 
clinicians spend a lot more time manually typing in 
the EHR than they would writing in a chart. Currently, 
physicians spend at least 5.9 hours out of an 11.4-hour 
work day using their EHR(96-97) and, for the years 
2005– 2018, the mean annual per capita patient face 
time with primary care physicians fell from 33.8 to 
30.4 minutes.(92) Furthermore, some of that face time 
was distracted time, it was typing into a computer and 
accessing information during the clinical encounter 
– which reduces the effective amount of time spent 
interacting with patients and distracts both the patient 
and clinician during the clinical encounter.(98) The 
amount of time demanded by the EHR means that clini-
cians : (1) may be less productive, they may see fewer 
patients, and they may generate fewer relative value units 
(RVUs), (2) due to computer-based distractions there 
can be more mistakes and (3), they may find it difficult 
to communicate with their patients. Finally, there is the 
direct effect of EHRs on clinicians. EHRs have created 
intense work place stress,(99) increased psychological 
and physiological fatigue,(100) and increased physician 
and nurse burnout.(101-107) It is little wonder that some 
physicians have negative feelings toward EHRs.(108)

In 2009, President Obama signed the Health 
Information Technology for Economic and Clinical 
Health (HITECH) Act. At that time, the American 
Medical Informatics Association (AMIA) held a 2009 
Annual Health Policy Meeting that focused on the unan-
ticipated consequence of EHR implementation. A recent 
study looked back at the AMIA meeting and found that 
it never anticipated the significant increase in physician 
burnout caused by EHRs.(109)

There are many inaccuracies in EHRs, which can 
affect clinical care.(110) Whereas handwriting mistakes 
were relatively easy to detect and correct, inaccuracies 
in EHRs are much more difficult to detect and correct.
(111-112) Once an erroneous piece of information is 
entered into the EHR it can be very hard to notice it and 
even more difficult to delete it. Some have advocated for 
proactive detection of health information technology-re-
lated problems(113) while others have advocated for the 
redesign of HIT systems to reduce mistakes.(113-115) 

Before EHRs, the clinical encounter began with physi-
cians picking up the patient’s chart before entering the 
exam or hospital room and quickly reviewing the clinical 
information that had accrued since their last visit. This 
process would usually take one or two minutes. They 
would then enter the room, sit across from, or next to, 
the patient. They would intermittently hand write their 
clinical note during the interaction. This all changed 
with the introduction of the computer, and its associated 
EHR, into the room. 

Currently, physicians enter the exam or hospital room, 
sign into the computer, access the EHR, open the patient’s 
record, and search for the current patient information 
using pull-down menus and click boxes, and by opening 
multiple windows. Once the clinician has found the rele-
vant information the interaction begins. The clinician 
continues interacting with the computer in oreder to 
view the patient’s alerts and reminders, to find additional 
information, and to enter encounter dropdown, click 
box, and free text information. On the positive side, it 
is true that the EHR improves the completeness of the 
clinical note.(36,71)

It is well known in human factors studies that tech-
nology can cause human mistakes and there has been 
a growing recognition, first documented in 2005, that 
EHRs can lead to mistakes.(72-85) For example, the EHR 
allows clinicians to cut-and-paste from previous notes 
into the current note. This adds out-of-date information 
to the encounter note, and it  can reduces the amount of 
current information in the note. Out-of-date information 
makes it difficult to rapidly obtain an accurate under-
standing of the patient’s current status.(86) Cutting and 
pasting does save clinician time, but at the expense of 
the clinical quality and the interpretability of the note. 
In a recent health information technology review, 53% 
of the studies found that HIT problems were associated 
with patient harm and death, and near-miss events were 
reported in 29% of the studies.(87) There have been an 
increasing number of safety professional liability claims 
related to EHRs, including the use of copy and paste, 
insufficient area for documentation, poor drop-down 
menus, and improper templates.(88) In addition, it can 
be difficult to establish and maintain a physician-pa-
tient rapport when the visit is a three-way interaction 
between the physician, the computer, and the patient. 
Over one-third of patients believe that the physician’s 
use of a computer in the clinical encounter negatively 
affects physician-patient communication.(88) Finally, 
the EHR’s poor physician usability has increased physi-
cian cognitive load, emotional distress, and created an 
unfulfilling workplace environment.(89)
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care, safety, quality, and value. In the past, to acquire 
medical information, an abstractor would have to be 
hired to audit paper charts. Unfortunately, today, an 
abstractor still must be hired, only now it is to audit 
electronic charts. The reason for this situation is because 
we cannot accurately and reliably read the free text in 
the clinical note. 

Because physicians’ free text narrative notes cannot be 
accurately and reliably read, administrators have resorted 
to creating boxes that clinicians must check, drop down 
menus, and structured fields. This fragments the clinical 
narrative and makes it difficult to find information and 
to understand patients, their medical condition, and their 
treatment. In addition, administrative billing/claims data 
is used to understand physician activity and performance. 
Unfortunately, administrative data can be incorrect 
because it misses important clinical information(120) 
and because it is affected by to payer reimbursement 
requirements. In addition, there are significant challenges 
associated with using administrative data for assessing 
safety and quality.(121) For example, post-op adverse 
event detection is 12.5% using administrative data and 
chart review, 24% using chart review.(122) For hospital 
adverse event detection: administrative data revealed, 171 
events whereas chart review revealed 456 events.(123)

Binary Data: Check Boxes 

There are three types of information formats in most 
EHRs: check boxes; structured and semi-structured 
text (including drop down prespecified text); and free 
text. Check boxes are labeled binary (present/absent) 
fields that consist of one or more items related to a clin-
ical problem. The boxes may be related to prevention, 
signs and symptoms, diagnosis, prognosis and treatment, 
and outcomes. Check boxes are useful to administra-
tive personnel because: (1) once the boxes are checked, 
the data can be easily and inexpensively acquired and 
summed and, (2) the data is already organized in terms 
of the category or subcategory of the check box.

Check boxes can require a great deal of checking. For 
example, when a patient present with a medical condition, 
then for each symptom, the clinician has to check some 
or all of the boxes related to onset, duration, frequency, 
location, setting, alleviating/aggravating factors, quality, 
intensity, severity, temporal trends, and unique manifesta-
tions. In terms of pain, they must check, paroxysmal pain 
(shooting, sharp, electric, hot, and radiating), superficial 
pain (itchy, cold, numb, sensitive, and tingling), and deep 
pain (aching, heavy, dull, cramping, and throbbing), and 
so forth. Furthermore, clinicians may have to check the 
relevant boxes that show the reasons for: (1) working 

Both solutions are necessary but both are expensive to 
implement. It is ironic that one of the main reasons for 
adopting EHRs was because they would improve safety 
by eliminating mistakes in the medical record only to 
find that EHRs have created their own mistakes that can 
be even more pernicious.(112, 116)

A recent RAND report stated that, “the current state 
of EHR [electronic health record] technology signifi-
cantly worsened professional satisfaction in multiple 
ways. Poor EHR usability, time-consuming data entry, 
interference with face-to-face patient care, inefficient and 
less fulfilling work content, inability to exchange health 
information between EHR products, and degradation 
of clinical documentation were prominent sources of 
professional dissatisfaction.”(90) Furthermore, physi-
cians complain that, because of shortcomings in the 
design and implementation of health information tech-
nology systems, current EHRs do not deliver sufficient 
clinical value to compensate for their difficulty and 
expense.(117) It was suggested that we should rethink the 
definition of meaningful use, reduce EHR difficulty, and 
improve their clinical utility.(118) In other words, EHRs 
may be necessary but they not sufficient, for increasing 
the safety and quality of medical care.

Importantly, it was not initially recognized how much 
EHR systems would cost. The hardware and software are 
very expensive to buy, maintain, and upgrade. For example, 
the cost of the U.S. Department of Veterans Affairs EHR 
implementation will be over $16 billion.(119) In addition, 
EHRs are very expensive to use because they reduce 
clinician productivity, lower morale, and increase burnout. 

One way to humanize health informatics is to demon-
strate its positive benefits to patients and clinicians by 
showing: (1) its ability to improve the delivery of medical 
services, (2) its ability to assist in the selection of the best 
therapy for an individual patient, and (3) its ability to 
improve patient outcomes. Furthermore, one of the most 
important goals of health informatics must be to improve 
the usability and efficiency of EHRs. Health informatics 
must develop EHRs that increase clinician productivity, 
improve morale, and lower burnout.

DIFFICULTY TO READ FREE TEXT HAS 
LIMITED QUALITY, SAFETY AND VALUE 

EHRs contain medically meaningful information. 
Meaning is defined as any unit of information that is 
directly or indirectly related to patients. A meaning is 
one or more words, phrases, and numbers. We would 
like to extract meanings automatically and systemat-
ically from the EHR so that we can improve patient 
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cannot fully represent the complexity and individu-
ality of patients, their diseases, and their treatments. 
Unstructured fields allow clinicians to write free text, so 
that they can properly describe the patient, the patient’s 
condition, explore possible diagnoses and the reasons 
for selecting one diagnosis over another, and justify the 
treatment that was selected for an individual patient. 
The need to automatically find the meanings expressed 
in free text has long been recognized as one of the most 
important goals of health informatics. The automatic 
systematic search for meaning in free text is the province 
of natural language processing.

Natural Language Processing

Natural language processing (NLP) is a computer 
program that takes as its input the clinician’s electronic 
free text, it searches the free text for a target meaning, 
and it returns as its output a report of the existence or 
non-existence of the target meaning. There are several 
problems with finding meaning in text: [1] there are many 
ways to write or say a meaning, [2] a meaning usually 
depends on the context, including the adjacent words, 
and the location in the sentence/paragraph/document, [3] 
additions to root forms (e.g., prefixes, suffixes), abbrevi-
ations, negation, temporal relations, and meanings that 
span sentence boundaries such as co-reference,(124) 
and [4] much of the medical free text is written in a 
telegraphic style that does not follow the canonical rules 
of English.

There are many approaches to NLP. The three most 
common are key word, rule-based, and statistical. Note 
that when the term “word” is used, it can also mean 
a phrase. Key word and rule-based approaches look 
for words in the text that match to the target words, 
whereas, statistical methods rely on learning patterns of 
words that correspond to the target meaning. A review 
of NLP methods in 2016 found that 24% used key word, 
67% used rule-based, and 9% used statistical methods.
(125) Since then the number of statistical methods has 
increased dramatically and they are now the predominant 
NLP method.

Key word, or key phrase, are searches for an exact 
word or phrase in the text. Since the meaning of the key 
word is known, if the key word is found in the text, then 
that meaning is present in the text. It can also search 
for variations of the word, for example, its root form 
or with a prefix or suffix. The major drawback of this 
approach is obvious, namely, it is too specific. One must 
perform a search for every way the word can be written. 
Furthermore, it does not take into account the adjacent 
words, such as negation, or its location in the sentence. 

up the patient, (2) determining the diagnosis, and (3) 
selecting a specific treatment. They may also have to 
describe the outcome of the treatment. In addition, they 
must somehow communicate (1) their reasoning, (2) who 
the patient is and what his or her values are, and (3) why 
the patient and clinician, using shared decision making, 
selected a particular treatment plan. Furthermore, the 
check boxes may not properly or fully capture the patient’s 
condition. Finally, the more boxes that have to be checked 
the more possible errors that can occur.

Check boxes can be useful for discrete, simple 
information but they are of little use for more complex 
information because there is currently no way to 
combine and organize large disparate collections of 
check boxes to create meaningful clinical information. 
The more complex and detailed the meanings of interest, 
the more hierarchal and detailed the boxes must be, 
the more boxes that must be checked, and the more 
difficult it is to put all the box information together into 
an integrated, coherent, and clinically useful medical 
description of the patient.

Alphanumeric Data: Structured and 
Semi-structured Fields

When we advance from binary data to alphanumeric 
data, we move from check boxes to structured and 
semi-structured data. Fully structured fields are fields 
that take specific values, for example, laboratory values 
and prescription orders. Structured data can also be 
exact text, for example, drop down menus that contain 
all the possible diagnoses in urological pathology. In 
this situation, every item on the menu has a corpus of 
text with a specific meaning. When an item is selected 
the exact same text is inserted into the EHR. Semi-
structured fields are usually domain-specific limited, 
pre-specified vocabularies, for example, radiology and 
pathology reports. Although the text may vary slightly, 
the predefined vocabulary establishes the meaning. 

In both structured and semi-structured fields, the type 
of information is already known by the label of the field, 
and what we want to know is the token for the patient. For 
example, for laboratory data, the type is already known, 
e.g., the field is labeled HbA1c, and we want to know the 
token, namely, the patient’s numeric value in the field. 
In other words, we search a specific meaning field and 
the information in the field is the meaning.

Alphanumeric Data: Unstructured Fields

The problem with using just check boxes and struc-
tured fields is the limited amount and type of information 
they to provide. Check boxes and structured fields 
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a limit to the accuracy of the resulting model. One way 
to observe the maximum sensitivity-specificity pair is 
to calculate Youden’s J statistic which relates sensitivity 
to specificity or by assessing the receiver operating 
characteristic (ROC).

The maximum sensitivity-specificity pair depends 
on the difficulty of the problem. Medical free text is 
very difficult. Currently, the upper limit of accuracy 
on medical free text is always less that 90% on routine 
clinical notes. To date, the most accurate NLP is a neural 
network approach called “transformer.”(126-127) Several 
investigators have applied statistical NLP methods to 
the detection of adverse events. Fan et al.(128) and 
Chopard(129) used algorithms to detect named entity 
adverse events. Both studies achieved moderately high 
accuracies but both were easy NLP tasks. To date, no 
published key word, rule-based, or statistical method has 
performed with a sufficiently high accuracy and reliability 
that it can be routinely used across all medical free text.

USING HEALTH INFORMATICS TO 
DETECT, REPORT, INVESTIGATE AND 
IMPROVE SAFETY AND QUALITY 

In most situations, EHRs will not, by themselves, 
improve the safety and quality of medical care but 
EHRs are a necessary prerequisite for quality and safety 
improvement. They are essential for: (1) detecting and 
reporting adverse events, (2) safety and quality improve-
ment initiatives, and (3) for effective prevention programs.

Although safety events are usually associated with 
clinicians, outpatient clinics, hospitals, and health- 
care systems, they can occur anywhere including in 
patient’s homes, in independent living situations (with 
or without home care), and in residential care including 
in assisted living and nursing facilities.(134-135) Finally, 
we must also focus on the patients and their actions and 
environments.

Focus on actions rather than events

An adverse event is “Adverse events are untoward 
incidents, therapeutic misadventures, iatrogenic injuries 
or other adverse occurrences directly associated with 
care or services provided within the jurisdiction of a 
medical center, outpatient clinic or other facility.”(130) 
In other words, an adverse event is a safety event that 
reached the patient. “A near miss is any event that could 
have had an adverse patient consequence but did not, 
and was indistinguishable from a full-fledged adverse 
event in all but outcome.”(131) A near miss event and an 
adverse event can have the same cause, which can result 

In other words, just knowing that a word is present is 
many times not sufficient for determining its meaning 
of the text.

Rule-based methods are more flexible. They allow for 
searching text in terms of subject-predicate statements: 
if X is in the text, then search for Y; if both X and Y are 
found, then you have found the meaning of the text. For 
example, if the term “pain” is in the text, then search for 
an anatomic location, such as leg. If you find both, then 
you infer that the patient has leg pain. Clearly, this is 
superior to a key word search, but many of the problems 
inherent in the key word search remain. For example, (1) 
you must specify all possible variations of the subject 
and predicate, (2) it does not take into account modifiers, 
and (3) its view of context is limited to the predicate. 

Statistical methods view the search for meaning in free 
text as a classification task. Many statistical methods have 
been used for NLP, including support vector machines, 
Bayesian conditional probability models, and artifi-
cial neural networks (also called artificial intelligence, 
machine learning, and deep learning). The ways that a 
meaning can be written are called patterns and these 
methods learn the patterns associated with a meaning. 
If a learned pattern is present in the text then we can 
say that the meaning is present. The patterns can be 
any combinations of words that correspond to the target 
meaning. The statistical method trains on text that has is 
known to have or not have target meaning (supervised 
learning). The dependent variable is the target meaning. 
Words or sets of words that are repeated and that are 
associated with the target meaning (patterns) are learned. 
The idea is that during training the statistical method 
will learn to use features in the text to create classes of 
patterns and to generalize these classes to patterns. The 
trained statistical model is presented with new free text 
set and it searches the free text for all the patterns it has 
learned. If it detects one of its patterns, it reports that 
the meaning is present in the text. The advantage of this 
approach is that one does not have to list all the possible 
ways of representing a meaning in the text, they can be 
found automatically as patterns. 

The main problem with statistical methods is that 
there is a tradeoff between sensitivity and specificity. The 
more patterns of words the algorithm accepts the more 
true positives it finds, but the more patterns it accepts the 
more false positives it also accepts. In other words, there 
is a tradeoff between saying that a meaning is present 
when it is present (true positive) and saying a meaning 
is present when it is not present (false positive). One can 
lower the detection threshold for a positive pattern, which 
will increase the true positive rate, but this will also 
increase the false positive rate. This means that there is 
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prevent, the unsafe action and for healthcare systems to 
be improved. A limited version of this system exists in 
pharmacy computerized provider order entry systems 
(discussed later). Finally, electronic medical management 
systems have been investigated in terms of system-related 
errors. Kinlay et al. found that, for example, such a system 
failed to properly check for duplicate orders and it was 
overly relied upon, which also caused errors.(112)

Reporting Safety Events and Actions

The current safety systems are retrospective, they 
operate on a case-by-case basis, they detect few errors, 
their incident evaluation and resolution process can miss 
the correct causes, the process takes a long time and 
can be expensive, and long-delayed corrective action 
can be ineffective. In the current system, the focus is on 
individuals to detect, report, and correct most unsafe 
actions. How good are individuals at reporting unsafe 
actions? Westbrook found that of the 218.9/1,000 clini-
cally important prescribing errors, only 13.0/1,000 errors 
were reported by the clinical staff.(141) Another study 
also found that few adverse event medication errors were 
recorded in the EHR.(142) Furthermore, two-thirds of 
near miss events were reported by a witness and one-third 
were self-reported.(143) Given that most near miss events 
are probably not witnessed, this suggests that many, if not 
most, near miss events are not reported; they are either 
ignored or dealt with by workarounds. Further support 
for near misses not being reported comes from medical 
residents who preferred to discuss an adverse event with 
their supervisor and at department-led conferences, 
rather than reporting the event.(144) Psychological safety 
increases the chance that a near miss will be reported, 
but the rate of reporting is still low.(145)

The current individual reporting approach is retro-
spective: it operates on a case-by-case basis, it detects 
few errors, its incident evaluation and resolution process 
can miss the correct causes, its process takes a long time 
and can be expensive, and its long-delayed corrective 
action can be ineffective. In the current system, the 
focus is on individuals to detect, report, and correct 
most unsafe actions. 

The opportunity for an unsafe action is, for a properly 
trained clinician, the product of the complexity of the 
action, the complexity of the activity within which the 
action occurs, the frequency of the action, the frequency 
of the activity, and person’s activation, over the specified 
time interval. Person activation is his or her arousal.
(146) The expected level of activation is equal to 1.0 
when the performer has a normal arousal, to <1.0 when 
the performer has too low an arousal (usually when 

in their being confounded. Essentially, a near miss event 
and an adverse event only differ in that one reached the 
patient and the other did not.(132)

Historically, safety has focused on events, such as 
near miss events and adverse events, rather than on the 
preceding unsafe actions that gave rise to these events. 
Furthermore, a safety event is usually the result of more 
than one prior action or inaction and, many times it is 
the result of a prior triple failure. Thus, one can suggest 
that the error is really due to a system failure. If we are 
to prevent the occurrence of safety events, we must focus 
on the system that allowed the unsafe actions or unsafe 
inactions that gave rise to the event to occur because once 
an unsafe event occurs it is too late to prevent it. In other 
words, the proximal unsafe action was influenced by a 
series of upstream unsafe actions/conditions/environ-
ments. Furthermore, the upstream causes of downstream 
events may not be known to the clinician and healthcare 
system as unsafe.(133) 

When we move away from focusing on events and shift 
our focus to actions, we can begin recognizing the impor-
tance of unsafe inactions. Unsafe inactions are missed 
care.(136) Missed care is “any aspect of required care 
that is omitted either in part or in whole, or delayed.”(137) 
They are not always mistakes, many times they are actions 
that are selectively not performed, usually due to time 
pressure, because it is believed that the inaction will not 
create a safety risk., or to a workaround to a problem. 
Because inactions can create safety risks, they must be 
recognized and incorporated in a safety program.(136,138) 
Currently, it is very difficult to detect unsafe inactions 
but, in the future, it may be possible for clinical decision 
support systems to be trained to detect unsafe inactions.

In terms of hospitals, it is well known that unsafe 
actions occur frequently throughout hospitals.(139) Many 
are not reported and, from a system perspective, they 
go unnoticed.(140) The essential questions are: how are 
unsafe actions to be detected, which unsafe actions should 
be reported, and how are unsafe actions to be prevented? 
One can propose a way to detecting unsafe actions using 
an automatic clinician decision support system to monitor 
performance across clinicians. Such a system requires: (1) 
an electronic safety detection system, (2) that all actions 
are entered into the system in real time, and (3) that the 
system analyzes the entered information and reports 
safety issues in real time. With this system in place an 
unsafe action or inaction (perhaps not noticed by the 
performing clinician) will be detected and reported by 
the system. The system would send a safety message 
to the clinician and to safety personnel that an unsafe 
action either has, or is, occurring. This would provide an 
opportunity for clinicians to truncate, and perhaps even 
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management (learning) within a facility and across the 
healthcare organization, and (3) feedback to leadership, 
safety personnel, and clinicians regarding the organi-
zational response. (150,154) There is a critical need for 
health informatics systems that can monitor healthcare 
systems and report problems before they occur, rather 
than blaming competent healthcare professionals.

Quantifying the severity of the reported event, for 
example, harm, has been difficult. AHRQ released version 
1.2 of its Harm Scale in April 2012. It has a two-part harm 
assessment process for harm, namely, the degree and 
duration of harm. Degree of harm consists of a five-point 
scale: death, severe harm, moderate harm, mild harm, and 
no harm. Duration of harm consists of a two-point scale: 
permanent (at least one year) and temporary harm.(160) A 
consistent problem in safety is that many of its scales have 
low interrater agreement. For example, the AHRQ Harm 
Scale v1.2 has a Cohen’s kappa of around 0.50 and raters 
have a great deal of difficulty distinguishing between 
severe, moderate, and mild harm.(161)

Finally, in most healthcare systems, the safety 
personnel are reactive, they spend most of their time 
filling out patient safety reports, investigating events, and 
providing documentation. Safety, must become proactive, 
it must anticipate and ameliorate unsafe situations. It 
must enlist the frontline clinicians and it must give them 
the necessary time and resources.(157,162) In conclu-
sion, safety personnel and frontline clinicians must work 
together using health informatics in order to provide safe 
high-quality care. 

Activity Related to Near Miss Events

When a near miss has been detected several things 
can happen. According to Jeffs there are three possible 
responses to a near miss.(139) There is the “quick fix,” 
where the effect of the near miss is dealt with but nothing 
else is done. There is the “going into a black hole,” where 
the near miss is dealt with and reported to the system, 
but clinicians never learn if it was fixed and, if so, how 
it was fixed. There is the “closing off the Swiss-cheese 
holes,” where the near miss is dealt with and reported to 
the system, the system takes corrective action to prevent 
its recurrence, and the relevant information is returned 
to the clinicians.

There is currently no consensus regarding which near 
miss events should be reported and how they should be 
dealt with.(87, 149) One response is the quick fix because 
it is the expedient solution. Another reason for the prev-
alence of quick fixes is that the person who produced 
the unsafe action does not want to be blamed for it, so 
fixing but not reporting it becomes the preferred solution. 

the task is repetitive and/or boring), and to >1.0 when 
performer has too high an arousal (usually when under 
a great deal of stress).

Currently, the actions of the most proximate-to-the-
event individual is usually blamed for the event. It is 
said that the individual made a mistake, forgot, exhibited 
poor communication, did not comply with policies and 
procedures, and much more.(143,147) In reality, a properly 
trained medical professional has usually performed the 
action safely many times in the past. But people are not 
perfect; there are random mistakes in human performance. 
In other words, on any given day, every individual has a 
probability of making a mistake. On this day, the mistake 
was made by this person – on another day it may be made 
by another person. The real problem is that there was no 
recognition of the fallibility of humans and of the many 
risks inherent in every medical activity. Thus, the event 
occurred because of several system failures, of which the 
performer’s error was just the last in the series of errors.

One approach to mistakes is punitive – blame the indi-
vidual. For example, administrative personnel may believe 
that they must educate the “offending attending physi-
cian and his or her staff.”(148) But competent individuals 
feel that it is unfair to blame them for the mistake, and 
denigrating the physician and his or her staff is counterpro-
ductive.(113) Although punitive measures can lead to anger, 
resentment, and a negative culture – playing the “blame 
game” is still prevalent in many healthcare systems. Most 
researchers who have assessed the utility of the punitive 
approach have rejected it. Instead, they have called for: (1) 
the option of anonymous reporting; (2) an expert, objective, 
systematic standardized process to analyze and understand 
unsafe actions; and (3) feedback regarding that changes 
were made in the system so that clinicians can feel that they 
are a part of the safety improvement process.(113,149-156) 
For physicians to use this feedback they must be well-
versed in terms of safety and quality but most healthcare 
systems do not provide physicians with the time they need 
to improve their knowledge.(157)

In other words, there is a failure to understand that the 
real causes of the unsafe action may be: (1) inadequate 
training and/or supervision by the system, (2) overwork 
and stressful conditions within the system, (3) distrac-
tions and interruptions, or (4) the system’s inability to 
maintain a safe clinical environment. For example, in 
hospital settings, interruptions are associated with more 
than 80% of the orders entered into the wrong EHR.(150) 
Unfortunately, by far the most common response to an 
unsafe action is to try to change people rather than to 
improve the system.(143,147,158-159) It is clear that there 
must be: (1) a non-punitive response to the report, (2) 
an effective organizational response including change 
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what should be reported, why it should be reported, how 
it should be reported, and what should be done with the 
report.(165,169)

The safety report can be deficient in several ways: (1) 
it may lack standardization of data, (2) it may not include 
of all the relevant data, and (3) it may contain analysis 
biases.(170) That said, patient safety reporting programs 
have been successful in medicine.(150,156,171-172) But 
attempts to adapt industry safety approaches to medi-
cine have resulted in numerous practical problems.(173) 
An important issue is that most industry systems use a 
total reporting approach which, in medicine, means that 
“any unintended or unexpected incident that could have 
or did lead to a harm” must be reported.(174) This is 
based on the belief that increased reporting will result in 
increase safety. This assumption can lead to a focus on 
quantity rather than quality. To take notice of every event, 
to mandate that each one must be properly reported, 
and to require that corrective action be taken for each 
reported event, will overwhelm most safety programs.
(139) For example, an oncology practice implemented a 
reporting program and in its first three years it received 
688 reports, each of which had to undergo a “plan, do, 
study, act” quality improvement cycle.(149) In a radiation 
department, over a two-year period 1,897 near misses 
were reported though their voluntary, electronic incident 
system. This represented an average of one near miss for 
every patient treated.(153) In a diverse group of primary 
care practices, over a nine-month period, 632 near misses 
were reported but only 32 quality improvement proj-
ects could be initiated.(152) It is well known that “the 
frequency of near misses in daily practice does make it 
impractical for clinicians to report every near miss, or 
for the organization to respond to every near miss.”(139) 
Thus, total reporting is probably not a viable approach 
in medicine.

The federal government, as one of the largest U.S. 
medical payers, has long been interested in knowing 
the safety of the care provided to its beneficiaries by 
its payee hospitals. In 2001, the Centers for Medicare 
and Medicaid Services (CMS) created the Medicare 
Patient Safety Monitoring System,(175) which, in 2009, 
was transferred to AHRQ. The Medicare Patient Safety 
Monitoring System performs manual chart reviews to 
determine the national rates for 21 types of adverse 
events and it creates a baseline for evaluating national 
patient safety initiatives.(175) Shortly after its creation, 
in 2003, AHRQ developed its 27 item Patient Safety 
Indicators that screen for adverse events that are likely 
to be preventable.(176)

Unfortunately, individual reporting and Patient 
Safety Indicators underreport safety events. They fail 

In addition, clinicians are over worked and they have 
competing priorities; taking the time to report an unsafe 
action may not be their highest priority.(139)

For reporting and acting on unsafe actions, one can 
take a Safety Assessment Code Matrix approach, namely, 
to prioritize unsafe actions in terms of the combination 
of their probability of causing an adverse event and the 
degree of severity of a resulting adverse event.(163) 
But the scoring system should not be based on subjec-
tive judgments, rather, it should be an evidence-based 
quantitative assessment. Using a data-driven expert 
system for guidance, some low-risk unsafe actions can be 
quickly fixed, while more serious unsafe actions require 
a report, systemic corrective action, and feedback to the 
clinicians. Furthermore, reporting should be electronic 
and standardized so that the reported information can be 
properly analyzed, effectively acted upon, and electron-
ically transmitted across the healthcare system. 

In addition to assessing risk, expert systems can assist 
in evaluating and eliminating unsafe events by prospec-
tively collecting data on unsafe actions. These data should 
be analyzed as a ratio, where the numerator is the number 
of detected unsafe actions (and inactions) and the denomi-
nator is the opportunity for an unsafe action (and inaction), 
over a specified time interval. This allows for the identi-
fication of those activities that have the highest chance of 
unsafe actions and which adjusts for the observed rate of 
unsafe actions.  This places the observed unsafe actions in 
the context of their probability of occurrence. This should 
be calculated by an expert system and the results should 
be the targets of a learning healthcare system.

Patient Safety Reporting 

There are several ways to report an adverse event. 
These include an individual reporting an incident (paper 
or electronic), auditor-based structured chart review, and 
safety briefings.(164) Few events are reported by incident 
or safety briefing, most are reported by structured chart 
review.(164) The detected events are usually entered into 
a patient safety reporting system(165) such as the Joint 
Patient Safety Reporting system.(166) The reporting of 
incident safety events used to require filling out a paper-
based record. This has been supplanted by electronic 
reporting system forms, for example, reporting in the 
Patient Safety Reporting System.(167) The electronic 
safety event report is sent to safety personnel where the 
event is documented and, if it is a Joint Commission 
sentinel event,(168) and sometimes even if it isn’t, it is 
investigated and reported.(168) Many factors must be 
taken into account when developing, implementing and 
using a patient safety reporting system. They include 
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substantial amount of error in the number of triggers 
and which triggers are detected. Another issue is that the 
review of the patient’s medical record is limited to 20 
minutes. It is well known that the longer the patent is in 
the hospital, the greater the chance of mistake, thus the 
limited chart review underestimates the number of errors 
and biases the types of errors detected.(194) 

AHRQ has begun development of the Quality and 
Safety Review System (QSRS) to replace the Medicare 
Patient Safety Monitoring System.(195) The new system 
is designed to overcome one of the main limitations 
of previous measurement systems, namely, the ad hoc 
search for safety event information in the chart. The 
QSRS directs reviewers to look for specific informa-
tion. The system uses existing information in the EHR, 
including age, sex, diagnoses, procedures, and poten-
tial adverse events as the basis for asking reviewers to 
acquire additional information from the chart. Based 
on what the reviewer reports, the QSRS may ask addi-
tional questions before determining whether an adverse 
event had occurred. The expert system uses explicit, 
standardized definitions of the variables and of adverse 
events (AHRQ Common Formats), and it uses validated 
rule-based (if-then) algorithms to detect adverse events. 
The QSRS has a broad scope, its goal is to detect most 
of the adverse events that occur in hospitals, i.e., to 
measure “all cause harm.” This standardized approach 
will allow reported rates to be compared across hospitals 
because they will be based on the same definitions and 
a standardized methodology. 

Clearly, the major limitation of safety reporting systems 
is their reliance on human reporters and reviewers. What 
is needed is for the reporting system to have the ability 
to detect meaning in free text using a natural language 
processing program. Furthermore, it needs to operate in 
real time and to have the capability of notifying clini-
cians regarding potentially unsafe actions so they can be 
prevented from becoming adverse events.(195)

Medicine is changing and reporting must keep up 
with it. For example, the frequency of virtual health 
(VH), which includes telehealth and telemedicine, has 
increased over the last few years.(196-197) Unfortunately, 
although there are efforts to learn more about VH safety 
and quality,(198) other than mental health, little is known 
about the safety and quality of VH. Another area of 
change is the shift from inpatient surgery to ambulatory 
and outpatient surgery.(199) CMS maintains two sepa-
rate reporting systems, namely, the Hospital Outpatient 
Quality Reporting system and the Ambulatory Surgery 
Center Quality Reporting system – and they only share 
two quality metrics. In addition, these systems do not 
consider the difficulty in dealing with infrequent and 

to detect approximately 90% of the hospital events.
(177) The Global Trigger Tool (GTT), developed by the 
Institute for Healthcare Improvement in 2003, assesses 
the safety of care provided by individual hospitals. It 
can detect up to 90% of adverse events, in compar-
ison to approximately 1% using voluntary reporting 
systems and 9% using the Patient Safety Indicators.
(177) The GTT process involves randomly selecting ten 
discharged patient medical records every two weeks 
at a hospital. Two reviewers independently review 
the same charts for the presence of one or more of 53 
“triggers,” which are entries in the medical record that 
require further investigation to determine whether 
an adverse event occurred and, if so, its severity. 
Regardless of the size of the chart and the complexity 
of the patient’s medical problems, each chart review 
is limited to 20 minutes. The two reviewers arrive at 
a consensus regarding triggers, adverse events, and 
severity. A physician adjudicator, the final arbitrator, 
and the reviewers then come to a final determination 
regarding the number, type, and severity of events. 
The physician does not review the records; he/she only 
assesses the reviewers’ results.

The GTT has improved the safety event detection 
process by defining a set of triggers. There is a substan-
tial body of evidence that supports the fact that the 
GTT significantly improves safety.(177-191) But the 
GTT is a manual process that has important limitations: 
(1) because it is not risk adjusted, it cannot be used to 
compare different types of hospitals; (2) it is very labor 
intensive and expensive; (3) it exhibits low abstractor 
agreement; (4) it does not examine all inpatients; and 
(5) a physician must adjudicate the abstractor’s findings 
for each putative adverse event.

Many organizations have partially implemented an 
electronic version of the GTT, using information from 
the EHR, including check boxes and structured fields.
(192) The problem with this approach is that it gener-
ates a huge number of triggers, each of which must be 
assessed by a reviewer for the existence of an adverse 
event – which is very time consuming and expensive. 
Furthermore, many of the triggers are not captured by 
the check boxes and structured fields, so this approach 
does not eliminate the need for a reviewer checking the 
medical records. 

In addition to the GTT’s lack of comprehensive-
ness, GTT does not assess all hospitalized patients. It 
employs an ad hoc search process for the triggers and 
each reviewer examines the chart in his or her own way. 
This may be one of the reasons for the low agreement 
between raters in terms of the triggers and for the adverse 
events.(193) The low agreement means that there is a 
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surveys, and self-reporting. In addition, the CMS Quality 
Payment Program (QPP) uses quality measures to justify 
payment.(203) Unfortunately, many small and medium 
medical practices cannot afford to comply with the CMS 
requirements. They must either accept less revenue or 
form cooperatives in order to provide the required infor-
mation. Richardson found that many practices are joined 
cooperatives in order to meet eCQM reporting require-
ments.(204)

Most medical organizations collect EHR data that is 
the basis for process and outcome measures.(205) But 
electronic clinical quality measures (eCQM) from EHRs 
are not always reliable.(206-208) Schmaltz assessed the 
reliability of EHR-extracted data elements to chart-ab-
stracted data and found only moderate agreement.(209) 
Although process measures are not always reliable, they 
tend to be more controllable than outcome measures 
because the healthcare system can directly control 
processes of care, whereas, outcomes are affected by 
many factors including patient behaviors.(206-208,201-
211) In fact, it has been suggested that outcomes, at least 
in cancer, are not a good measure of quality.(212)

The data for these measures are periodically aggregated 
to assess and improve the organization’s performance. 
The aggregate results can be presented numerically or 
graphically, or a combination of the two. The display 
of these measures is usually called a dashboard. For 
example, a Veterans Integrated Services Network, in 
order to improve the quality, safety, and value of its care 
of veterans, developed 300 dashboards and reports.(213) 
Although apparently a very simple task, in reality, the 
communication of actionable safety and quality infor-
mation is devilishly difficult. There are intense issues 
regarding what to display, how to display it, and what 
the display means.

In the past, the development of electronic dashboards 
has been primarily ad hoc. Administrators usually 
targeted specific measures for performance assessment 
and the targeted measures drove the creation of dash-
boards. Initially, dashboards represented the monitoring 
of administrative activities such as resource utilization, 
but over time they were expanded to include safety and 
quality measures. Typically, there was no explicit plan 
regarding how to operationalize the organization’s safety 
and quality objectives in terms of an integrated systematic 
set of aggregated measures and there was little recogni-
tion regarding whether the dashboard was for strategic, 
tactical and operational use.(214) Furthermore, an eval-
uation method to determine whether the organization’s 
dashboard goals had been met was rarely present.(215) 
For example, Karami et al. identified seven evaluative 
categories for dashboards, namely, user customization, 

low risk procedures. Currently, CMS pays for reporting 
rather than outcomes. 

Many safety program activities and reports are not 
yet fully integrated into the EHR. Health informatics 
needs to develop and implement an automated safety 
reporting system that: (1) is a part of the EHR, (2) can 
be triggered electronically, (3) automatically populates 
the safety report, (4) contains a safety expert system to 
guide the assessment of the event, (5) allows the inves-
tigation to be entered into the final safety report, and (6) 
expands its focus from reporting to assessing pattens of 
care and outcomes.

Root Cause Analysis

A root cause analysis is a reactive process performed 
by a safety team that attempts to discover the prior causal 
events that gave rise to a observed safety event. In addi-
tion, it recommends steps that can be taken to prevent 
the safety event from recurring. TapRoot®(200) is a 
commercial root cause analysis system. The problem with 
the root cause analysis approach is that it commits the 
post hoc, ergo propter hoc (“Since event Y followed event 
X, event Y must have been caused by event X.”) logical 
fallacy. As David Hume pointed out in Of Miracles, for 
any effect, there are many possible causes and the effect 
does not directly point to its cause.(201) Furthermore, in 
medicine, there are almost always a cascade of causes 
that result in an observed safety effect.

One way to solve this problem is to use health infor-
matics. A health informatics system can monitor some 
of the actions occurring in the healthcare system and, 
when a safety event occurs, prospectively link those 
prior actions to the subsequent event. Another approach 
is to create a comprehensive list of all the antecedents, 
regardless of their possible relationship to the event, 
and place them in an algorithm that models the event 
and provides the probability of each antecedent being 
related to the event.

Safety and Quality Measurement and Information Display

Measurement is based on the Ancient Greek idea that 
if something cannot be named it cannot be controlled 
– quality management has accepted this idea with a 
twist – if it cannot be measured it cannot be improved. 
There are many quality measurement systems. One 
of the most utilized is the National Committee for 
Quality Assurance’s Healthcare Effectiveness Data and 
Information Set (HEDIS) measures.(202) It consists of 
a set of quality measures that assess how well patients 
are being cared for by clinicians and healthcare systems. 
HEDIS uses defined and structured field searches, 
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of a type of medical process. The goal is to use the token 
to learn about, and improve, the type. In other words, 
an activity would be selected that indexed a medical 
process and what is learned by improving the activity 
will be used to improve all the activities that are within 
the domain of that process of care.

QUALITY IMPROVEMENT PROJECTS

The goal of most, if not all quality improvement proj-
ects is to reduce the rate of a measured safety event to 
zero.(219) The editors of JAMA Internal Medicine criti-
cally appraised the quality improvement studies that they 
receive for publication and they found that many of them 
were of poor quality for the following reasons: (1) they 
were not generalizable, the problem existed only at one 
center or the intervention was only performed at a limited 
number of centers; (2) many studies only focused on 
changes in healthcare processes, use, or cost rather than 
on clinical outcomes; (3) they did not assess, in addition 
to benefits, potential adverse effects; (4) value, in terms of 
cost savings, did not reflect the costs associated with the 
intervention; (5) it was rare for there to be a control group; 
(6) no attempt was made to use statistical methods that 
approximated randomization; and (7) even when blinding 
was possible it was not done.(220) Furthermore, the 
American College of Surgeons pointed out that, although 
many reported quality improvement projects involve 
large organization, most projects are local, occurring 
within one hospital, most are poorly funded or unfunded, 
and they are run by front line clinicians rather than by 
quality professionals.(221) The American College of 
Surgeons proposed a framework for small local quality 
improvement projects. Finally, few studies that assess the 
project’s potential for success and discover its unintended 
consequences are performed prior to starting a quality 
improvement project. Interestingly, neither the JAMA 
Internal Medicine study nor the American College of 
Surgeons framework even mentioned the critical role 
that health informatics plays in quality improvement. 

CLINICAL DECISION SUPPORT SYSTEMS

Over the last 10 years there has been a great deal 
of interest in reducing diagnostic errors. In 2015, the 
National Academies of Sciences, Engineering and 
Medicine published, Improving Diagnosis in Health 
Care.(229) It described many of the current diagnostic 
problems and it recommended ways to improve diag-
nostic accuracy. Clinical decision support systems were 
an integral part of their diagnostic improvement strategy. 

knowledge discovery, security, information delivery, 
alerting, visual design, and integration and system 
connectivity – few of which are systematically evalu-
ated during the development, and use of, a dashboard.
(157,216) In addition, there was little understanding of 
significant intellectual, financial, and personnel resources 
necessary to create an effective dashboard.(214) Finally, 
there is little empirical evidence for the utility of dash-
boards. (215) Recent reviews have found that most of the 
dashboard literature consists of dashboard descriptions 
and individual case reports rather than empirical studies.
(214-215) A review of dashboard effectiveness concluded 
that there is limited evidence that dashboards integrated 
into electronic medical records systems, and used as 
feedback or decision support tools, are associated with 
improvements in medical use and test ordering.(217) In 
other words, it is not yet known whether dashboards, as 
opposed to other methods of understanding safety and 
quality results, are effective at improving safety and 
quality. Finally, health informatics is at its best when it 
operates in real time and when its information drives 
immediate actions that prevent or ameliorate an unsafe 
action.(218) Unfortunately, dashboards rarely provide 
real-time data and it is even rarer that they drive imme-
diate action.(215) 

Clearly, there are tens of thousands of medical activ-
ities that can be measured to determine if the activities 
deliver safe, high quality, high value medical care. All of 
which can be targets of  a quality improvement project if 
they do not deliver safe, high-quality care. For example, 
for safety, we can assess the rate of unintended retained 
foreign objects after surgery; for quality, we can assess 
the frequency of indwelling urinary catheters in hospi-
talized patients; and, for value, we can assess the rate 
of MRI testing in the context of lower back pain. One 
can ask, what was the rationale for the selection of each 
of these measures and for the 20, or 50, or 100 other 
measures that comprise their dashboard? Perhaps it was 
to assess the most frequent activities, or to assess the 
most easily measured activities, or to assess the most 
expensive activities, or to assess what the government, 
for whatever reason, chose to be assessed. Let us now 
suppose that, after years of work and a great deal of 
time and money, we drive down the frequency of one or 
more of these activities. What is the next step? Is it to 
focus on another activity, and then another, until we have 
measured and changed thousands of activities? This is 
best described as a whack-a-mole process. Once a mole 
is whacked another pops up and we whack it, and then 
another and we whack it, ad infinitum.

A better approach is based on the type-token distinc-
tion. The idea is that a specific medical activity is a token 
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risk of disease including prevention, or diagnosis, or 
prognosis including treatment and outcome.(181) From 
a safety and quality perspective, the basic idea is that 
CDSSs provide physicians with information that can be 
used to prevent or ameliorate unsafe actions or inac-
tions and they can provide the healthcare system with 
information that can be used to improve overall quality 
of care. 

Early clinical decision support systems were autono-
mous because there was no EHR for them to be integrated 
into. Other than the importation of laboratory data, all 
data entry had to be performed manually by clinicians. 
With the advent of the EHR, CDSSs have sifted to inte-
grated systems that acquire data from the health record 
database. Unfortunately, because free text is usually 
not reliably read, these data are usually acquired from 
checkboxes and structured fields. 

Today, autonomous or semi-autonomous CDSSs exist 
for some medical tasks, for example, in dermatology, 
where the primary source of data is the image. In 2006, 
Tleyjeh et al. created a program, VisualDx, into which 
clinicians entered descriptors and lesion morphologies 
and it provided a dermatologic differential diagnosis.
(223) More recently, they developed an app that can 
provide a dermatologic differential diagnosis based on 
images.(224) The clinician takes a picture of the derma-
tologic lesion and enters relevant factors such as age, 
travel, medical and social history, and the location, distri-
bution, and appearance of the lesion into the program. 
The program contains more than 2,800 conditions and 
more than 40,000 images. Chou found that VisualDx 
could improve the dermatologic diagnostic accuracy 
of medical students and residents by 19%.(225) CDSSs 
such as VisualDx, MyDermPath, YouDermoscopy are 
currently in use.(226) It is important to note that, in the 
realm of prediction, images are the easier to predict (iden-
tify) than outcomes because they possess spatiotemporal 

They stated that “Diagnostic decision support tools can 
provide support to clinicians and patients throughout 
each stage of the diagnostic process, such as during 
information acquisition, information integration and 
interpretation, the formation of a working diagnosis, 
and the making of a diagnosis.” It should be pointed out 
that, in order to achieve the envisaged automated clin-
ical decision support system, a highly accurate natural 
language processing system will have to be in place. 

Although it was asserted that the elimination of the 
paper chart by the EHR would significantly reduce errors 
and improve quality, that claim was made before the wide-
spread adoption of the EHR. Since its implementation it 
has become clear that, although there is no longer any 
illegible handwriting and the chart is readily available, 
the EHR is not without its own problems. For example, 
the cut-and-paste function has made the patient record 
less intelligible, there are typing errors, and clinicians 
are having a hard time using EHR systems. But the 
EHR cannot be abandoned, instead it must be improved, 
because it is necessary for the development and use of 
most clinical decision support systems (CDSS). In the last 
decade, advances in safety and quality have largely been 
due to quality improvement projects and CDSSs that have 
been built into, and rely upon, the EHR.

CDSSs have been defined as, “any software designed 
to directly aid in clinical decision making in which 
characteristics of individual patients are matched to 
a computerized knowledge base for the purpose of 
generating patient-specific assessments or recom-
mendations that are then presented to clinicians for 
consideration.”(222) Full-fledged CDSSs have a graph-
ical user interface, contain a functional algorithm, and 
display the output of the algorithm. The algorithm can 
be a human-constructed system of it can be a trained 
statistical/probabilistic model that takes as its input 
individual patient clinical information and provides as 
its output predictions regarding an individual patient’s: 

Table 1. In terms of data acquisition, there are two main types of CDSS.

Autonomous systems: they operate independently of the EHR. They require that an individual manually input the 
data and receive the results. Historically, autonomous systems have been used for diagnosis.

Integrated systems: they interact directly with the patient’s EHR. They access and analyze the clinical data and 
report their results. Currently, the main types of integrated systems are: (a) computerized provider order entry 
for medications (discussed below), laboratory and radiographic test results and, (b) clinician alerts, reminders, 
and checklists. Integrated systems allow for the automated detection of safety issues in order to prevent 
their occurrence and to ameliorate their effects. An integrated system can operate in one of two modes: (i) in 
batch mode, where it periodically accesses, analyzes and reports its results or (ii) in real-time mode, where it 
continuously accesses, analyzes, and reports its results.
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evaluate the safety of the order using rules and informa-
tion from the patient’s EHR and that transmit alerts to the 
clinician when a potentially unsafe action (medication 
order) is occurring. CPOE systems have been shown to 
reduce duplicate medications, drug overdoses, adverse 
drug-drug interactions, and the prescribing medica-
tions that patients are allergic to.(232-237) A recent 
meta-analysis of CPOE systems in the intensive care 
unit found an 85% reduction in medication errors by 
clinicians and a 12% reduction in mortality associated 
with the computerized provider order entry system.(238) 
A CPOE system has been shown to improve medication 
documentation.(239) Furthermore, Colombini found that 
that when hospital discharge medication orders, after 
having been reviewed by a pharmacist, where edited 
by a CPOE, there were fewer prescription errors.(240) 
Finally, a recent study of 10,535 pre-CPOE medication 
orders and 13,841 post-CPOE medication orders found 
that CPOE reduced the proportion of orders with one or 
more errors by 30.1%, which included a 20.1% reduction 
in dosing errors, a 18.9% reduction in procedural/admin-
istrative errors, but only a 2.6% reduction in therapeutic 
errors.(241)

But computer-based systems are not perfect, they can 
make mistakes.(87,116) CPOEs can be the source of two 
types of errors: “(1) errors in the process of entering and 
retrieving information (e.g., interfaces that are not suit-
able for a highly interruptive use context, that produce 
cognitive overload by requiring structured information 
entry, that fragment information onto different screens, 
and that overemphasize information about a patient that 
is not useful), and (2) errors that come from a mismatch 
between the structured communication and coordination 
processes embedded in digital systems relative to the 
highly flexible and fluid ways in which clinical work 
happens in reality.”(242) Furthermore, CPOEs can create 
duplicate prescriptions, miss wrong dose and wrong drug, 
generate mistakes related to drop down menus,(228,243-
245) and alerts can malfunction.(228, ,243-246) It had 
been thought that adding additional CDSS capabilities 
to a CPOE systems would offer additional safety and 
quality benefits, but CDSSs did not provide any addi-
tional benefit.(247-250) Furthermore, it is not always 
the case that all aspects of a safety solution need be 
electronic. A common outpatient medication mistake 
is dispensing a medication to the wrong patient, which 
occurs in 1.22 per 1,000 dispensed prescriptions.(236) 
Simple measures, such as checking the prescription with 
the patient at the point of sale, can reduce these mistakes 
by 56%.(251)

Another form of CPOE is the system related to the 
ordering of laboratory and radiology tests. Whereas, 

contiguity – which means that adjacent information can 
be used to assist in image identification.

Although there are some autonomous CDSSs today 
most are integrated into EHRs. They operate on struc-
tured fields and check boxes, and on laboratory, radiology, 
and pathology data. Furthermore, these CDSSs can 
be running in the background in real time during the 
patient encounter – assessing and responding to infor-
mation entered into the EHR. It is the CDSSs real-time 
monitoring and response system capability that make 
it a potentially very powerful safety and quality tool. 
Examples of integrated systems are medication comput-
erized provider order entry systems (CPOE) and alerts, 
reminders, and check lists. 

Medication errors are a tremendous safety problem. 
Published in 2007, the Institute of Medicine’s Preventing 
Medication Errors, presented information regarding 
the incidence and cost of medication mistakes.(227) 
They pointed out that paper-based prescribing was 
one of the most common sources of medical mistakes 
and adverse events. These mistakes were due to many 
factors, including: (1) illegible handwriting and the use 
of abbreviations in prescription orders, (2) incomplete 
and incorrect prescriptions (e.g., incorrect dose calcu-
lation, drug name confusion, restarting a discontinued 
medication), (3) adverse drug-drug interactions, and 
(4) prescribing a medication to which the patient was 
allergic.(228-229) A recent study examined some of 
the factors related to physician medication errors.(230) 
It found that of 1,652,896 medical orders prescribed by 
1066 physicians, 3738 (0.23%) prescriptions as erro-
neous. Physicians were 8.2 times more likely to make an 
error during high rather than normal-low workload shifts 
and they were more likely to make an error for medi-
cation they lacked experience with. Elliott estimated 
that in England 237 million medication errors occur at 
some point in the medication process annually, 38.4% 
occurring in primary care; 72% have little/no poten-
tial for harm and 66 million are potentially clinically 
significant.(231) Avoidable adverse drug events (ADEs) 
avoidable ADEs [adverse drug events] are estimated 
to cost the NHS £98 462 582 per year, consuming 181 
626 bed-days, and causing/contributing to 1708 deaths. 
A recent study estimated that, annually in England, 
using UK National Health Service data found that there 
are 627 deaths in primary care due to ADEs and 1081 
deaths in hospitalized patient and secondary care were 
due to ADEs.(231)

Medication Computerized Physician Order Entry 
(CPOE) systems are electronic systems that are integrated 
into the EHR and allow physicians to electronically order 
medications. They usually contain expert systems that 
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clinician’s ordering diabetes testing in women with a 
history of gestational diabetes.(267) But not all reminders 
are equally effective. Reminders for appropriate labo-
ratory monitoring had no impact on rates of receiving 
appropriate testing for creatinine, potassium, liver func-
tion, renal function, or therapeutic drug level monitoring.
(268) It appears that the efficacy of a reminder depends, 
in part, on whether there is a clinical problem that the 
reminder solves.

Safety checklists are activity-specific ordered lists 
of the actions that must be performed to successfully 
accomplish the task.(269) Checklists sequentially focus 
clinicians’ attention on specific tasks. They are used in 
situations where an obligatory sequence of actions must 
be performed and where, if an action is omitted or an 
incorrect action is added, there is the potential for an 
unsafe inaction or action to occur – which could result 
in an adverse event. Checklists are especially useful in 
situations where several clinicians are performing coor-
dinated actions on a patient in a complex, multi-stimuli 
environment. They have been used in surgery,(269) in 
rounding in intensive care units,(270) and for cross-
checking in emergency departments.(271) 

Surgical checklists can reduce preventable medical 
mistakes.(269,272-275) When they are used, patients 
have better postoperative outcomes.(276) They reduce 
the rate of complications, reoperations, and readmission. 
They have a positive impact on the clinician outcomes 
of communication, case understanding and safety, and 
on the patient outcomes of complications and mortality. 

Recently, computer-based interactive, dynamic, adap-
tive safety checklists have been developed, many of 
which are linked to the EHR.(277-281) Interactive means 
that when an item is checked as completed, the system is 
updated, dynamic means that the checklist advances as 
the items on the checklist are completed, and adaptive 
means that the checklist can change based on changing 
conditions in the clinical workflow. These capabilities 
are based on the checklist’s if-then algorithms and data-
driven expert systems.

The major limitations of checklists are that: (1) it can 
tell if an action was done or not done but it cannot tell if 
what was done was what was supposed to be done and it 
cannot tell whether it was done correctly, (2) checklists 
are time consuming, and (3) checklists can disrupt an 
established workflow.(282-283) Some have found that 
some checklists are not relevant to the medical activity, 
that they are too long, and that they are not integrated 
with the daily work flow.(270)

Checklist compliance is many times reported as high 
but these reports of success are rarely accompanied by 
empirical support. Empirical evidence has been adduced 

ordering medications dealt with safety, laboratory test 
ordering systems usually deal with quality and costs; 
reducing unnecessary testing in order to reduce the 
volume of tests patients undergo and the cost of testing. 
A recent study used a CDSS to detect tests with a high 
repetition probability, or great complexity, or which were 
mutually incompatible within the same order.(252) The 
system would either cancel the test with no recourse 
or cancel it but allow the test after a written justifica-
tion. They found that the provider order entry system 
reduced testing by 16% and costs by 17%. In a similar 
manner, radiology testing was reduced when CDSSs 
reviewed information in the patient’s chart and denied 
testing.(253) Unfortunately, clinicians complained that 
the system was: (1) not easy to use; (2) too slow; (3) 
presented a high risk of error; and (4) required frequent 
interactions between the clinical staff. The investigators 
concluded that user acceptance and satisfaction were 
critical to system success. If clinicians did not find that 
the system benefited them, then they would either not 
use the system or they would use it in a suboptimal 
manner or they would invent a workaround. In order to 
improve the functioning of test ordering alerts, Bellodi 
et al. developed machine learning models that automat-
ically predicted whether the clinician would accept the 
CDSS’s advice.(252) They found that their predictive 
models, which targeted CDSS alerts, could substantially 
reduce clinician alert burden while maintaining most or 
all the CDSS benefit.

There are many kinds of alerts, including interruptive, 
facilitative interruptive, non-interruptive, and graded or 
tiered alerts.(255) Unfortunately, there are far too many 
alerts, which blunts their effectiveness. Frequent alerts 
regarding co-administration incompatibilities negatively 
influenced adherence to the alerts – which resulted in 
many alerts being either ignored or overridden.(256-262) 
Cerqueira assessed the effectiveness of interruptive medi-
cation-prescriber alerts in changing prescriber behavior 
using a CPOE system.(263) They found that alerts were 
effective in changing prescriber behavior but it was not 
clear whether the interruptions themselves led to errors 
or whether they even improved outcomes. Furthermore, 
there is a tradeoff between safety and alert fatigue.(264) 
Alert fatigue has significantly reduced clinician enthu-
siasm for medication alerts.(256,262,265)

Another kind of alert, a patient-specific electronic 
reminder, occurs less frequently and has been shown 
to be an effective safety tool. Reminders that were inte-
grated into an EHR increased clinician adherence to 
recommended care for diabetes and coronary artery 
disease.(266) In addition, a recent systematic review 
showed that reminders were effective in increasing 
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Real-Time Systems

Although medication alert and reminder systems 
operate in real time, they are just the initial steps in the 
development and implementation of real time CDSSs. 
We would like to have the following:

1. Clinician-patient clinical encounter: This system 
takes as its input the real time natural language 
information added to the EHR by the physician 
during the physician-patient interaction.(241) The 
CDSS continuously monitors this input in real time, 
in order to detect unsafe actions and conditions 
and to report unsafe actions and conditions to the 
physician while the interaction is in progress so a 
safety event can be prevented. 

2. Medical procedure: This system takes as its input 
audiovisual information produced in real time 
during the procedure and adds it to the EHR. The 
CDSS continuously monitors the participant’s activ-
ities input in real time in order to detect unsafe 
actions and conditions and to report unsafe actions 
and conditions to the physician while the procedure 
is in progress so that a safety event can be prevented.

Decision Aids for Shared Decision Making

Patients need information in order for them to 
participate in the shared decision-making process. 
This information can be provided by decision aids. The 
World Health Organization has created the International 
Patients Decision Aid Standards process(293), which may 
be customized by disease and other factors.(294) Esmaeili 
assessed 16 mammography decision aids and found that 
they improved knowledge and informed choice, they 
decreased decisional conflicts and increased decisional 
confidence, but they did not affect attitudes towards 
mammography, mammography participation rates, 
psychological issues, anticipated regret, or perceived risk 
of breast cancer.(295) In terms of womens’ motivation 
for screening, decision aids only an effect in rare cases. 
Furthermore, a recent study provided moderate-quality 
evidence that decision aids, compared with usual care, 
are associated with only a small decrease in decisional 
conflict and low-quality evidence that they are associ-
ated with an increase in knowledge but they did not help 
with whether physicians and patients discussed prostate 
cancer screening or with screening choice.(296) Keikes 
successfully implemented a decision aid that consisted of 
a consultation sheet and web-based tailored information 
for metastatic colorectal cancer treatment options.(297) 
They implemented it at 11 Dutch hospitals. They achieved 
adequate patient participation and patient and medical 

to assess checklist compliance. In an audio-recorded 
assessment of their use, Salgado found that, although 
the reported compliance rate was 97.5%, the actual 
compliance rate was only 73.6%.(284) Furthermore, 
using video recordings, Kulp identified three non-com-
pliant checklist use behaviors: failure to check items 
for completed tasks, falsely checking items when tasks 
were not performed, and inaccurately checking items 
for incomplete tasks.(285) A recent observational study 
in 11 hospitals and consisting of 715 valid observations, 
found that only 71% of the checklist items were read off 
from the checklist, the rest were recalled from memory.
(286) Two of the items were only readout 74% and 
60% of the time. Visual checks with another source, 
for example the patient wristband, occurred only 41% 
of the time and verbal confirmation of the items on the 
checklist by someone other than the checklist coordi-
nator occurred, on average, 76% of the time. The surgical 
teams’ reaction to the peer feedback was only 64% 
positive. Finally, checklist adherence tends to drop off 
over time. For example, the use of a childbirth checklist 
declined from 100% initially, to 72.8% at 2 months, to 
61.7% at 12 months.(282) 

How well the CDDSs are implemented can have a 
profound effect on their acceptance and use.(111,287-
289) For example, in an odd twist of fate, the CPOE 
prescription system used at a major teaching hospital in 
France crashed and they had to return to a paper-based 
order system.(290) The residents were given a satisfaction 
and user survey for both the electronic and paper order 
systems. They were almost four times more satisfied 
with the paper than the electronic system and they did 
not detect an increase in errors. In other words, comput-
er-based systems that are not user-friendly, not efficient, 
and do not add clinical value can be detrimental to 
medical practice. User feedback should be solicited, and 
the acquired information acted upon, in the creation and 
deployment of computer-based clinical systems.(111,291) 
Finally, because clinical decision support systems have 
become part of the clinician work-flow, it is important 
to design them so that they seamlessly integrate into the 
clinician-patient clinical encounter.(219)

Molecular biomarkers (including proteogenomics 
which are constitutive of many disease processes) have 
the potential to allow us to better understand, predict, and 
treat disease. Currently, there is limited collection and 
reporting of molecular biomarkers. The use of molecular 
biomarkers is accelerating and will soon be routinely 
collected and entered into patients’ medical records. This 
molecular biomarker use will allow CDSSs to become 
more powerful and more clinically useful.(292)
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of such recommendations to make a clinical diagnosis 
or treatment decision regarding an individual patient.” 

Shortly after the 21st Century Cures Act, the FDA 
released three guidance documents, including “Draft 
Guidance for Industry and Food and Drug Administration 
Staff.”(305) It accepted the Act language and went on 
to state that software that analyzes medical images or 
laboratory or medical tests would remain under FDA 
oversight. The FDA agency has proposed changes to 
previously published regulatory guidelines covering 
general wellness and mobile medical apps that pose 
a low risk for patients. They have also established a 
common framework for regulators to evaluate software as 
a medical device based on the overall risk of the product. 
The FDA plans to provide its final guidance in 2022. The 
Act not only made many medical software products legal, 
but it also opened the field to tremendous innovation. 

FUTURE TRENDS

Health informatics will at some time in the future 
develop an accurate NLP program. This advance will 
allow for the automatic detection of meaning in free text, 
which will drive the redesign and improvement of the 
EHR – hopefully making it more clinician-friendly. It 
will also advance safety and quality because programs 
can be developed that ingrate free text detection and 
reporting systems into the EHR. Furthermore, predictive 
modeling and machine learning, through their integration 
into CDSSs, will become part of the everyday practice 
of medicine. These CDSSs will improve risk (including 
prevention), diagnosis, and prognosis (including treat-
ment) predictions. Furthermore, they will operate in 
real time and alert clinicians to actions that may place 
patients at risk.

CONCLUSIONS

We have shown that health informatics is a vital 
and necessary part of safety and quality. Furthermore, 
that EHRs and CDSSs can provide physicians with 
real time information that can improve the safety and 
quality of their medical care. But there are problems 
that must be addressed. For example, a recent editorial 
in Lancet Oncology stated, “What has become evident 
over the past two decades or longer is that vast amounts 
of data have now infiltrated every aspect of our daily 
lives. From data analytics to artificial intelligence, to 
predictive modelling and machine learning, we are 
now seeing these systems being incorporated into all 
aspects of health, including those found in oncology. 

oncologist satisfaction but the oncologists and patient 
login rates varied widely between hospitals. 

A recent evidence review of 71 patient decision aids 
found that “the evidence identified for our decision aids 
was indeed a “scattered landscape” and often poor quality.
(298) Facing a high prevalence of low-quality, non-directly 
comparative evidence for treatment alternatives doesn’t 
mean it is not necessary to choose an evidence-based 
approach to inform patients. While there is an urgent need 
for high quality comparative trials, best available evidence 
nevertheless has to be appraised and transparently commu-
nicated to patients.”(298) Decision aids have been used 
to decide whether the patient should undergo an elective 
joint replacement.(299) The use of decision aids has been 
shown to reduce the rate of hip and knee surgery, thus 
reducing medical utilization and costs.(300-301)

One way to improve decision aids is to make them 
part of a CDSS. In other words, instead of the CDSS 
just providing the physician with the decision-related 
information, have it also provide the patient with the 
relevant decision-related information. For example, the 
CDSS can provide predictions regarding the risks and 
benefits of a treatment for an individual patient. These 
estimates can be discussed with the patient as part of 
shared decision making. 

U.S. Food and Drug Administration

Although the Centers for Medicare and Medicaid 
Services and the Agency for Health Care Research and 
Quality has been the driving forces behind the implemen-
tation and use of EHRs and related systems, the U.S. Food 
and Drug Administration is the federal agency respon-
sible for the regulation of medical devices, including 
medical hardware and software. The Food and Drug 
Administration has been interested in medical software, 
including clinical decision support systems, for many 
years. It held hearings and provided guidance in 1998, 
1999, and 2002.(302-304)

In 2016, Congress passed the 21st Century Cures 
Act (Public Law No. 114-255, FDCA § 520(o)(1)(E)), 
which exempts from regulation software designed for: 
“(i) displaying, analyzing, or printing medical informa-
tion about a patient or other medical information (such 
as peer-reviewed clinical studies and clinical practice 
guidelines); (ii) supporting or providing recommenda-
tions to a health care professional about prevention, 
diagnosis, or treatment of a disease or condition; and 
(iii) enabling such health care professional to inde-
pendently review the basis for such recommendations 
that such software presents so that it is not the intent 
that such health care professional rely primarily on any 
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But as now shown by the JAMIA study, physicians are 
not always willing to accept the changes that these 
systems bring. Although big data offers the promise 
of easing workflows, ensuring treatment adherence 
according to guidelines, the analysis of large datasets, 
maintenance of a centralized records system, improving 
diagnostic accuracy, and monitoring disease or drug 
safety surveillance—all of which could be hugely bene-
ficial for the future of health care—clearly a delicate 
balance is needed when integrating those promises into 
the clinical decision-making process.”(306) Indeed, 
health infor¬matics must move beyond measuring 
selected clinical activities and being administrative 
tools designed to increase revenue and reduce costs. 
It must be accepted by physicians which means that it 
must make life easier for the physician while, at the same 
time, helping them improving their medical care and, 
as a consequence, improving safety, quality, and value. 
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